近日,一则人工智能或能提前一周预测台风的消息引发关注。报道称,日本海洋研究机构和九州大学的研究小组利用人工智能深度学习技术,开发了从全球云系统分辨率模型(NICAM)气候实验数据中高精度识别热带低气压征兆云的方法。该方法可识别出夏季西北太平洋热带低气压发生一周前的征兆。
不看不知道,原来人工智能在天气预报方面已经开始发威。它会比人类预报得更准吗?记者为此采访了中央气象台专家,试图理解气象预报的AI助手究竟表现如何。
AI已成天气预报研究热门
根据相关报道,研究小组具体的做法是首先利用热带低气压跟踪算法,将全球云系统分辨率模型20年积累的气候实验数据,制成5万张热带低气压初始云及演变中的热带低气压云图片,再加上100万张未演变成热带低气压的低气压云图片,共105万张图片组成10组学习数据,利用深度卷积神经网络的机器学习,生成不同特征的10种识别器,然后构筑出可对10种识别器结果进行综合评价的集合识别器。
对此,中央气象台台风与海洋气象预报中心副主任钱奇峰表示,相关报道只介绍了做法,并没有体现出具体的预报成果,“台风发展有一些阶段,发展时间比较长,在大洋上形成胚胎,短则2至3天、长的要5天甚至7天发展成台风。要提前7天识别出热带低气压发生前的征兆,相信是可以做到的。”
据钱奇峰介绍,将神经网络的方法用在天气预报上并不新鲜,上世纪八十年代已经有一些应用,随着大数据和人工智能的发展,海量数据深度学习、复杂神经网络等逐步应用,人工智能预报天气已经成为很热门的一个话题。不光用在临近天气的预报,气候应用研究、台风海洋预报、海雾的预报等领域,都有人工智能技术的加持。
中央气象台天气预报技术研发室副主任代刊介绍,学界对AI在天气气候中的应用研究进展进行了分类整理,主要包括雷达质量控制、卫星数据反演及同化等气象数据处理;短时临近预报、概率预报、台风海洋天气预报、极端或灾害性天气预警、环境预报等天气业务;风暴环境特征分类、天气系统识别等天气气候分析;通信、生态环境、水资源和能源等领域的商业或行业应用。如何将人工智能技术应用到天气气候研究和应用领域,已成为热点方向。